109 學年度指定科目考試(補考) 數學甲考科非選擇題參考答案

數學甲的題型有選擇、選填與非選擇題。非選擇題主要評量考生是否 能夠清楚表達推理論證過程,答題時應將推理或解題過程說明清楚,且得 到正確答案,方可得到滿分。如果計算錯誤,則酌給部分分數。如果只有 答案對,但觀念錯誤,或過程不合理,則無法得到分數。

數學科非選擇題的解法通常不只一種,在此提供多數考生可能採用的 解法以供各界參考。

109 學年度指定科目考試(補考)數學甲考科非選擇題各大題的參考答案說明如下:

第一題

第(1)小題(4分)

(2,0,1) 與(0,1,1) 做外積得平面法向量為(-1,-2,2)。

因為通過原點,所以平面 E 的方程式為 x + 2v - 2z = 0,

$$\exists \exists b = 2 \cdot c = -2 \cdot d = 0 \circ$$

第(2)小題(2分)

因為
$$\overrightarrow{A'B'} = \overrightarrow{A'A} + \overrightarrow{AB} + \overrightarrow{BB'}$$
,又 $\overrightarrow{A'A}$ 與 \overrightarrow{u} 垂直, $\overrightarrow{BB'}$ 與 \overrightarrow{u} 垂直,所以 $\overrightarrow{A'B'} \cdot \overrightarrow{u} = \overrightarrow{A'A} \cdot \overrightarrow{u} + \overrightarrow{AB} \cdot \overrightarrow{u} + \overrightarrow{BB'} \cdot \overrightarrow{u} = \overrightarrow{AB} \cdot \overrightarrow{u}$

第(3)小題(6分)

由(2)同理可得 $\overrightarrow{A'B'} \cdot \overrightarrow{v} = \overrightarrow{AB} \cdot \overrightarrow{v}$; 因此

$$5 = \overrightarrow{A'B'} \cdot \overrightarrow{u} = \alpha (\overrightarrow{u} \cdot \overrightarrow{u}) + \beta (\overrightarrow{v} \cdot \overrightarrow{u}) \underline{1} \underline{2} = \overrightarrow{A'B'} \cdot \overrightarrow{v} = \alpha (\overrightarrow{u} \cdot \overrightarrow{v}) + \beta (\overrightarrow{v} \cdot \overrightarrow{v}) \circ \underline{2} \cdot \overrightarrow{u} \cdot \overrightarrow{u} = 5 \circ \overrightarrow{v} \cdot \overrightarrow{v} = 2 \circ \overrightarrow{u} \cdot \overrightarrow{v} = 1$$
解聯立方程组
$$\begin{cases} 5\alpha + \beta = 5 \\ \alpha + 2\beta = 2 \end{cases} \Rightarrow \alpha = \frac{8}{9}, \beta = \frac{5}{9} \circ$$

第二題

第(1)(2)小題(各4分)

解法一

$$f(x) = x^3 + bx^2 + cx + d$$

$$= \frac{1}{3} f'(x)(x+k) = \frac{1}{3} (3x^2 + 2bx + c)(x+k) = x^3 + (\frac{2}{3}b+k)x^2 + (\frac{2}{3}bk + \frac{c}{3})x + \frac{c}{3}k$$
比較 x^2 項係數 , 得 $b = \frac{2}{3}b + k \Rightarrow k = \frac{b}{3}$, 也 就 是 $b = 3k$ 。
比較 x 項 與 常 數 項 係 數 並 將 $b = 3k$ 代 入 得 $c = 3k^2, d = k^3$ 。

因此

$$f(x) = (x+k)^3 \Rightarrow f'(x) = 3(x+k)^2$$

故 f'(x) = 0 有重根 -k。

解法二

因為 $f'(x) = \frac{1}{3}(f''(x)(x+k)+f'(x))$,所以 $f'(x) = \frac{1}{2}f''(x)(x+k)$,故 -k 皆為 f(x) = 0、 f'(x) = 0的根,即 -k 為 f(x) = 0的重根。

若 $\alpha \neq -k$ 為 f(x) = 0 的另一相異實根,由 $f(\alpha) = \frac{1}{3} f'(\alpha)(\alpha + k) = 0$ 知 $f'(\alpha) = 0$,即 α 也是 f(x) = 0 的重根。此與 f(x) 為三次多項式相矛盾。故 -k 為 f(x) = 0 的三重根。因此 $f(x) = (x + k)^3$,

展開得b=3k。

第(3)小題(4分)

由
$$f(-1) = 0$$
 , 推得 $k = 1$, 即 $f(x) = (x+1)^3$,

所以
$$\int_0^1 (x^3 + 3x^2 + 3x + 1) dx = \frac{1}{4} + 1 + \frac{3}{2} + 1 = \frac{15}{4}$$
 。